Rob Weston

Research #

There and Back Again: Learning to Simulate Radar Data for Real-World Applications

Rob Weston, Oiwi Parker Jones and Ingmar Posner. In 2021 International Conference on Robotics and Automation (ICRA)

Simulating realistic radar data has the potential to significantly accelerate the development of data-driven approaches to radar processing. However, it is fraught with difficulty due to the notoriously complex image formation process. Here we propose to learn a radar sensor model capable of synthesising faithful radar observations based on simulated elevation maps. In particular, we adopt an adversarial approach to learning a forward sensor model from unaligned radar examples. In addition, modelling the backward model encourages the output to remain aligned to the world state through a cyclical consistency criterion. The backward model is further constrained to predict elevation maps from real radar data that are grounded by partial measurements obtained from corresponding lidar scans. Both models are trained in a joint optimisation. We demonstrate the efficacy of our approach by evaluating a down-stream segmentation model trained purely on simulated data in a real-world deployment. This achieves performance within four percentage points of the same model trained entirely on real data.

Masking By Moving: Learning Distraction-Free Radar Odometry from Pose Information

Dan Barnes, Rob Weston, and Ingmar Posner. In 2020 Conference on Robot Learning (CoRL)

This paper presents an end-to-end radar odometry system which delivers robust, real-time pose estimates based on a learned embedding space free of sensing artefacts and distractor objects. The system deploys a fully differentiable, correlation-based radar matching approach. This provides the same level of interpretability as established scan-matching methods and allows for a principled derivation of uncertainty estimates. The system is trained in a (self-)supervised way using only previously obtained pose information as a training signal. Using 280km of urban driving data, we demonstrate that our approach outperforms the previous state-of-the-art in radar odometry by reducing errors by up 68% whilst running an order of magnitude faster.

Probably Unknown: Deep Inverse Sensor Modelling In Radar

Rob Weston, Sarah Cen, Paul Newman, and Ingmar Posner. In 2019 International Conference on Robotics and Automation (ICRA), pp. 5446-5452. IEEE, 2019

Radar presents a promising alternative to lidar and vision in autonomous vehicle applications, able to detect objects at long range under a variety of weather conditions. However, distinguishing between occupied and free space from raw radar power returns is challenging due to complex interactions between sensor noise and occlusion. To counter this we propose to learn an Inverse Sensor Model (ISM) converting a raw radar scan to a grid map of occupancy probabilities using a deep neural network. Our network is selfsupervised using partial occupancy labels generated by lidar, allowing a robot to learn about world occupancy from past experience without human supervision. We evaluate our approach on five hours of data recorded in a dynamic urban environment. By accounting for the scene context of each grid cell our model is able to successfully segment the world into occupied and free space, outperforming standard CFAR filtering approaches. Additionally by incorporating heteroscedastic uncertainty into our model formulation, we are able to quantify the variance in the uncertainty throughout the sensor observation. Through this mechanism we are able to successfully identify regions of space that are likely to be occluded.

image