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Linear Regression

Estimate a function f* : R® — R with a linear model f(x) = w' ¢(x) from observations y(x) = f*(x) + ¢

corrupted by noise € ~ Norm(0, ™) where...

* ¢ =RP - RMis a known function mapping x € R” to a feature space ¢(x) € R.

* w e RM is used to weight each feature in ¢

® « is the observation precision and is assumed a hyper-parameter

The bias is assumed to be included in w corresponding to a fixed feature ¢(x) = 1. Code for the example below

can be found here.
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Overview

2. Frequentist Linear Regression
Linear Regression - A frequentist approach
As optimal function estimation
Learning from noisy observations
Overfitting and problems with finite datasets
Regularisation
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Linear Regression - A frequentist approach

Find the weights that maximise the likelihood w* = arg max,, log p(y|w, X, @) given N observations
y=1I,.,mle R" where

N N
log p(y|w, X, ) = IogH Nor(ya|w ' ¢n,a” ') = gloga — glog 21 — Z(yn —w' ¢n)’ = —E(w)
n=1

= n=1
e Differentiating with respect to w and setting to 0 gives w* = (&' ®) '@y is equal to the
Moore-Penrose Inverse where and & = [¢p(x1), ..., p(xm)] T € RV*M is the design matrix.
Similarly for a we have (a*)™! = %anvzl(y,, —w* T p(xn))?

® Assuming we have inputs x ~ p(x) and letting N — oo, optimising over w is equivalent to®

W’ = arg ming By [(v(x) — " ¢(x))] = arg min, Epge [£(y (x), F(x; w))]

This comes from the fact that w only depends on the term SN (v, — w' ¢,)? in E(w)
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Linear Regression as Optimal Function Estimation

Instead of viewing the optimisation over parameters w we can view the optimisation over functions f

® We aim to estimate a function f* from observations y(x) = f*(x) + € corrupted by noise . We have

f = arg ming {E ) [€ (v(x), f(x))]} = arg min, {L[f]}
where £ (y(x), f(x)) is a loss function between points y(x) and f(x).

® This can be viewed as a calculus of variations problem = "determine the function f(x) which
minimises the functional L[f] = E,x,,)[€ (y(x), f(x))]".

® The optimum estimator f is determined by our choice of loss function £.

* For {(y(x), f(x)) = (y(x) — f(x))? it can be shown that #(x) = Eoy1x)[y(x)] and so f(x) = f*(x) (as the
mean of p(y|x) = N(y(x)|f*(x),0?) is £*(x)).

® In this case L[f] becomes the mean squared error Mse|[f]
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Learning from Noisy Observations

Maximum Likelihood with Noisy Observations

When we estimate f(x) from noisy observations y(x) = £*(x) + € with € ~ A/(0, 5®/) using maximum likelihood
we are guaranteed to converge to the true solution f(x) = f*(x) corresponding to an optimal loss

Mse[f] = Ep(x)[(y(x) — f(x))*] = 0

Proof Writing y = y(x), f = f(x) and f* = f*(x)

Mse[f] = Eppe,[(y — £)°] (1)
olly =+ =) )
Epe) (v = )1+ Eppe) [(F7 = £))] + 2B ) [(F7 = £)(y — £7)] ®3)
) = FPI+ Epen[(f* = £)%)] assuming (f* — f) and (y — f) are uncorrelated  (4)
If we have E[e] = 0 then E 10 [y] = y‘x)[f (x) + €] = f*(x). The expected loss in this case is given as
Mse[f] = Epx,)[(¥(x) = £ (x))*] = Epe,y)[€7] = 0.
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Maximum Likelihood is good when N is big...

s Maximum likelihood estimate for N = 100
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... but bad when N is smalll

s Maximum likelihood estimate for N = 20
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Why?

Working with Finite datasets

When we work with a finite dataset D we are no longer estimating the ideal maximum likelihood estimate f(x)
but instead approximating it with f(x) = f(x; D). Different datasets D ~ p(D) will result in different estimates

f(x; D). In this case our estimate f is no longer ideal and the expected mean squared error becomes
Mse[f] = o° + Bias®[f] + Var[f]

where o2 is the observation variance, Bias[f] = E,{(f* — Epp)[f])?} is the bias in the estimator f and
Var[f] = EP(X){(EP(D)[F] — )2} is the variance in f.

Proof As before we have L[f] = Eppon[(y — £5)%] + Epp [(F* — ))]. Expanding the second term gives,

EP(X){(f* - F)z} = EP(X){(f* - EP(D)[F] + IEP(D)[’F] - f)z} (5)
= EP(X){(f* - IEP(D)['E])2 + (EP(D)[F] - ’?)2 +2(f" = IEP(’D)[fz])(EP(’E’)[’;] - 7;)} (6)
= EP(X){(f* - EP(D)[';])Z} + EP(X){(EP(D)[F] - f)z} (7)
= Bias®(f) + Var(f) (8)

Noting that E, ) [(y — f*)?] = o2 gives L[f] = 0 + Bias?(f) + Var(f).
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Working with Finite datasets

When we work with a finite dataset D we are no longer estimating the idea/ maximum likelihood estimate f(x)
but instead approximating it with 7(x) ~ f(x; D). Different datasets D ~ p(D) will result in different estimates

f(x; D). In this case our estimate f is no longer ideal and the expected mean squared error becomes
Mse[f] = o + Bias®[f] + Var[f]

where o2 is the observation variance, Bias[f] = E,{(f* — Eyp)[f])?} is the bias in the estimator f and
Var[f] = Epp {(Exp)[f] — F)?} is the variance in f.

Note:

® In the limit as N — oo we have p(D) = §(D — D*) and  — f = f*(x): this is why maximum likelihood is
good for large NI
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Regularisation

From the perspective of Occams Razor

When N is small the maximum likelihood solution overfits to the data (good at predicting training data
but bad at generalising)

Solution = Occam’s Razor —> "Prefer the simpler model"

Could make the model simpler by reducing the dimensionality of the feature space M and so limiting the
number of parameters w € RM in our model. But difficult to optimise over...

Instead penalise the norm of the weights ||w|| and consider w* = arg min, £(w) with
L(w) = E(w) + A[jw]|

where E(w) is as defined before.

For ||w|| = ||w]||3 we can arrive at £(w) considering a MAP estimate for w with a prior
p(w) = Norm(w|0, 371) and in this case w* = (M + &7 &) '@y,

Could also consider ||w| = ||w||1. In this case the weights in w are encouraged to be sparse (eg. identical
to 0).
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Regularisation

From the perspective of Bias and Variance
® The expected mean squared error for a non-ideal estimator is given as
Mse[f] = o° + Bias’[f] + Var[f]

where 02 is the observation variance, Bias[f] = E ) {(f* — Ep(p)[f])?} is the bias in the estimator  and
Var[f] = IEP(X){(IEP(D)[F] — )2} is the variance in f.

® Observation: The maximum-likelihood estimate is just one of a host of estimates we could use for f~and
the above decomposition remains true independent of the loss function we actually optimise to find f

® Idea: "design a new loss function £ which results in smaller mean squared error L[f] when N is small"

® By introducing regularisation
L(w) = E(w) + Aw||

we increase the Bias|[f] but reduceNVar[f] for small N. For a correct weighting A this can result in smaller
expected mean sqaured error Mse[f] = E ) [(f(x) — f*(x))?]
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Regularisation

High Variance - Low Bias...

. Regularisation coefficient = 0.001
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Regularised Linear Regression

Medium Variance - Medium Bias...

. Regularisation coefficient = 0.1
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Regularised Linear Regression

Low Variance - High Bias...

s Regularisation coefficient = 4.0
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Regularised Linear Regression

Bias-Variance Trade Off
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Choosing ...

® In reality we do not have access to the true function f* and so evaluating Bias[f] is impossible

® \We can estimate the expected mean squared error over a test set held out from training and use this to
tune A (cross validation)

® But relies on splitting our dataset reducing the size of N and increasing our chances of overfitting

® |s there a better way?
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Overview

3. Bayesian Linear Regression
Our example revisited
The Effective number of Parameters
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Bayesian Linear Regression

Bayesian Linear regression offers a valuable alternative...

1. Assume that the weights are no longer fixed but instead a random variable w ~ p(w|3) with prior
p(w|B) = Norm(w|0, 3~ w) (shape of prior governed by the prior precision f3).

2. As before assume the likelihood of our observations is given as p(y|w, a) = [T\, Norm(y|w " x,a™ ")

3. Calculate the posterior distribution p(wly, c, 8). In this case we have
p(wly,a,3) = Norm(w|my, Sy) with my=aSy®'y and Sy'=p8l+ad &
4. Use the posterior-predictive distribution
p(r1y. ) = [ plylw)p(wly. ., 8)dw = Norm(y|mi 6.0~ + & Sue)

to predict new y averaging across all possible values of weights w.
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Bayesian Linear Regression

What about the hyper-parameters « and 87

® Could assume conjugate priors and add them to the latents adopting a full Bayesian approach BUT results in
intractable posterior distribution for w

® Instead consider maximum likelihood estimators using &, 3 = arg maxaﬁp(y\a, B) maximising the marginal
likelihood p(y|a, B) = [ p(y|w,a)p(w|8)dw — Known as Empirical Bayes or Type Il Maximum Likelihood

® Marginal likelihood is in this case given as

M N o 8 1 ., N
log p(y|a, B) = > log B + > log o — EHy —®my|? - Em,—VrmN — §|SN1| -5 log 27

e Differentiating and setting to 0 an iterative scheme emerges for estimating & and ...

1. Choose starting values for a and 3
Calculate X = eig(® T ®)
Calculate Sy = (Bl + a® T &)1
Calculate my = aSy® Ty

A(
Calculate v = 3, ip
(N—7)
2:,7(}47*”",:/r ¢(Xn))2
Update 8 = ﬁ

my

Update a =

© N O ORrwDd

Repeat steps 3-7 until convergence
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Bayesian Linear Regression

Our earlier example revisited...
® Bayesian linear regression automatically results in a regularised solution as a result of marginalising out the
uncertainty in w
® Hyper-parameters « and 3 are estimated from the training set - all available data used for training

Bayesian Linear Regression with N = 20
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What is 7

Noting that v = ),

A A
i Ni+B Ai+B "

As ' &

Aj
AitB —
Two cases:

1. \; >> (: the estimate for w; will be close to its ML estimate and X +/3 ~1
2. \j << f3: The estimate for w; ~ 0 (the prior value) and 5’ Jr'ﬁ ~0

The quantity v has an intuitive interpretation as the effective number of parameters in the model.
~ parameters are set by ML and M — ~ are set from the prior.

This can be seen in the estimate for the likelihood variance o™ = ﬁ S (o — m) d(xm))?
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