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Linear Regression
Estimate a function f ∗ : RD → R with a linear model f (x) = w>φ(x) from observations y(x) = f ∗(x) + ε
corrupted by noise ε ∼ Norm(0, α−1) where...
• φ = RD → RM is a known function mapping x ∈ RD to a feature space φ(x) ∈ RM .
• w ∈ RM is used to weight each feature in φ

• α is the observation precision and is assumed a hyper-parameter
The bias is assumed to be included in w corresponding to a fixed feature φ(x) = 1. Code for the example below
can be found here.
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Linear Regression - A frequentist approach

• Find the weights that maximise the likelihood w∗ = arg maxw log p(y |w ,X , α) given N observations
y = [y1, .., yN ] ∈ RN where

log p(y |w ,X , α) = log
N∏

n=1

Nor(yn|w>φn, α
−1) =

N

2
logα− N

2
log 2π −

N∑
n=1

(yn − w>φn)
2 = −E(w)

• Differentiating with respect to w and setting to 0 gives w∗ = (Φ>Φ)−1Φ>y is equal to the
Moore-Penrose Inverse where and Φ = [φ(x1), ...,φ(xM)]> ∈ RN×M is the design matrix.

• Similarly for α we have (α∗)−1 = 1
N

∑N
n=1(yn − w∗>φ(xn))2

• Assuming we have inputs x ∼ p(x) and letting N →∞, optimising over w is equivalent to1

w∗ = arg minwEp(x,y)[(y(x)− w>φ(x))2] = arg minwEp(x,y)[`(y(x), f (x ;w))]

1This comes from the fact that w only depends on the term
∑N

n=1(yn − w>φn)
2 in E(w)
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Linear Regression as Optimal Function Estimation

Instead of viewing the optimisation over parameters w we can view the optimisation over functions f
• We aim to estimate a function f ∗ from observations y(x) = f ∗(x) + ε corrupted by noise ε. We have

f̂ = arg minf
{
Ep(x,y)[` (y(x), f (x))]

}
= arg minf {L[f ]}

where ` (y(x), f (x)) is a loss function between points y(x) and f (x).
• This can be viewed as a calculus of variations problem =⇒ "determine the function f (x) which

minimises the functional L[f ] = Ep(x,y)[` (y(x), f (x))]".

• The optimum estimator f̂ is determined by our choice of loss function `.
• For `(y(x), f (x)) = (y(x)− f (x))2 it can be shown that f̂ (x) = Ep(y|x)[y(x)] and so f̂ (x) = f ∗(x) (as the

mean of p(y |x) = N (y(x)|f ∗(x), σ2) is f ∗(x)).
• In this case L[f ] becomes the mean squared error Mse[f ]
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Learning from Noisy Observations

Maximum Likelihood with Noisy Observations
When we estimate f (x) from noisy observations y(x) = f ∗(x) + ε with ε ∼ N (0, σ2I ) using maximum likelihood
we are guaranteed to converge to the true solution f (x) = f ∗(x) corresponding to an optimal loss
Mse[f ] = Ep(x,y)[(y(x)− f (x))2] = σ2

Proof Writing y = y(x), f = f (x) and f ∗ = f ∗(x)

Mse[f ] = Ep(x,y)[(y − f )2] (1)

= Ep(x,y)[(y − f ∗ + f ∗ − f )2] (2)

= Ep(x,y)[(y − f ∗)2] + Ep(x,y)[(f
∗ − f )2)] + 2Ep(x,y)[(f

∗ − f )(y − f ∗)] (3)

= Ep(x,y)[(y − f ∗)2] + Ep(x,y)[(f
∗ − f )2)] assuming (f ∗ − f ) and (y − f ) are uncorrelated (4)

If we have E[ε] = 0 then Ep(y|x)[y ] = Ep(y|x)[f
∗(x) + ε] = f ∗(x). The expected loss in this case is given as

Mse[f ] = Ep(x,y)[(y(x)− f ∗(x))2] = Ep(x,y)[ε
2] = σ2.
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Maximum Likelihood is good when N is big...
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... but bad when N is small!
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Why?

Working with Finite datasets
When we work with a finite dataset D we are no longer estimating the ideal maximum likelihood estimate f̂ (x)
but instead approximating it with f̂ (x) ≈ f̃ (x ;D). Different datasets D ∼ p(D) will result in different estimates
f̃ (x ;D). In this case our estimate f̃ is no longer ideal and the expected mean squared error becomes

Mse[f̃ ] = σ2 + Bias2[f̃ ] + Var[f̃ ]

where σ2 is the observation variance, Bias[f̃ ] = Ep(x){(f ∗ − Ep(D)[f̃ ])
2} is the bias in the estimator f̃ and

Var[f̃ ] = Ep(x){(Ep(D)[f̃ ]− f̃ )2} is the variance in f̃ .

Proof As before we have L[f̃ ] = Ep(x,y)[(y − f ∗)2] + Ep(x)[(f
∗ − f̃ )2)]. Expanding the second term gives,

Ep(x){(f ∗ − f̃ )2} = Ep(x){(f ∗ − Ep(D)[f̃ ] + Ep(D)[f̃ ]− f̃ )2} (5)

= Ep(x){(f ∗ − Ep(D)[f̃ ])
2 + (Ep(D)[f̃ ]− f̃ )2 + 2(f ∗ − Ep(D)[f̃ ])(Ep(D)[f̃ ]− f̃ )} (6)

= Ep(x){(f ∗ − Ep(D)[f̃ ])
2}+ Ep(x){(Ep(D)[f̃ ]− f̃ )2} (7)

= Bias2(f̃ ) + Var(f̃ ) (8)

Noting that Ep(x,y)[(y − f ∗)2] = σ2 gives L[f̃ ] = σ2 + Bias2(f̃ ) + Var(f̃ ).
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Why?

Working with Finite datasets
When we work with a finite dataset D we are no longer estimating the ideal maximum likelihood estimate f̂ (x)
but instead approximating it with f̂ (x) ≈ f̃ (x ;D). Different datasets D ∼ p(D) will result in different estimates
f̃ (x ;D). In this case our estimate f̃ is no longer ideal and the expected mean squared error becomes

Mse[f̃ ] = σ2 + Bias2[f̃ ] + Var[f̃ ]

where σ2 is the observation variance, Bias[f̃ ] = Ep(x){(f ∗ − Ep(D)[f̃ ])
2} is the bias in the estimator f̃ and

Var[f̃ ] = Ep(x){(Ep(D)[f̃ ]− f̃ )2} is the variance in f̃ .

Note:
• In the limit as N →∞ we have p(D) = δ(D−D∗) and f̃ → f̂ = f ∗(x): this is why maximum likelihood is

good for large N!
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Regularisation

From the perspective of Occams Razor
• When N is small the maximum likelihood solution overfits to the data (good at predicting training data

but bad at generalising)
• Solution = Occam’s Razor =⇒ "Prefer the simpler model"
• Could make the model simpler by reducing the dimensionality of the feature space M and so limiting the

number of parameters w ∈ RM in our model. But difficult to optimise over...
• Instead penalise the norm of the weights ‖w‖ and consider w∗ = arg minwL(w) with

L(w) = E(w) + λ‖w‖

where E(w) is as defined before.
• For ‖w‖ = ‖w‖22 we can arrive at L(w) considering a MAP estimate for w with a prior

p(w) = Norm(w |0, β−1I ) and in this case w∗ = (λI +Φ>Φ)−1Φ>y .
• Could also consider ‖w‖ = ‖w‖1. In this case the weights in w are encouraged to be sparse (eg. identical

to 0).

Linear Models Frequentist Linear Regression → Regularisation 10 / 20



Regularisation

From the perspective of Bias and Variance
• The expected mean squared error for a non-ideal estimator is given as

Mse[f̃ ] = σ2 + Bias2[f̃ ] + Var[f̃ ]

where σ2 is the observation variance, Bias[f̃ ] = Ep(x){(f ∗ − Ep(D)[f̃ ])
2} is the bias in the estimator f̃ and

Var[f̃ ] = Ep(x){(Ep(D)[f̃ ]− f̃ )2} is the variance in f̃ .

• Observation: The maximum-likelihood estimate is just one of a host of estimates we could use for f̃ and
the above decomposition remains true independent of the loss function we actually optimise to find f̃

• Idea: "design a new loss function L which results in smaller mean squared error L[f̃ ] when N is small"
• By introducing regularisation

L(w) = E(w) + λ‖w‖
we increase the Bias[f̃ ] but reduce Var[f̃ ] for small N. For a correct weighting λ this can result in smaller
expected mean sqaured error Mse[f̃ ] = Ep(x)[(f̃ (x)− f ∗(x))2]
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Regularisation
High Variance - Low Bias...
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Regularised Linear Regression
Medium Variance - Medium Bias...
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Regularised Linear Regression
Low Variance - High Bias...
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Regularised Linear Regression
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Choosing λ...

• In reality we do not have access to the true function f ∗ and so evaluating Bias[f̃ ] is impossible
• We can estimate the expected mean squared error over a test set held out from training and use this to

tune λ (cross validation)
• But relies on splitting our dataset reducing the size of N and increasing our chances of overfitting
• Is there a better way?
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Bayesian Linear Regression

Bayesian Linear regression offers a valuable alternative...

1. Assume that the weights are no longer fixed but instead a random variable w ∼ p(w |β) with prior
p(w |β) = Norm(w |0, β−1w) (shape of prior governed by the prior precision β).

2. As before assume the likelihood of our observations is given as p(y |w , α) =
∏N

n=1 Norm(y |w>x , α−1)

3. Calculate the posterior distribution p(w |y , α, β). In this case we have

p(w |y , α, β) = Norm(w |mN ,SN) with mN = αSNΦ
>y and S−1N = βI + αΦ>Φ

4. Use the posterior-predictive distribution

p(y |y , α, β) =
∫

p(y |w)p(w |y , α, β)dw = Norm(y |m>N φ, α−1 + φ>SNφ)

to predict new y averaging across all possible values of weights w .
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Bayesian Linear Regression
What about the hyper-parameters α and β?
• Could assume conjugate priors and add them to the latents adopting a full Bayesian approach BUT results in

intractable posterior distribution for w
• Instead consider maximum likelihood estimators using α̂, β̂ = arg maxα,βp(y |α, β) maximising the marginal

likelihood p(y |α, β) =
∫
p(y |w , α)p(w |β)dw → Known as Empirical Bayes or Type II Maximum Likelihood

• Marginal likelihood is in this case given as

log p(y |α, β) =
M

2
log β +

N

2
logα−

α

2
‖y −ΦmN‖2 −

β

2
m>N mN −

1
2
|S−1N | −

N

2
log 2π

• Differentiating and setting to 0 an iterative scheme emerges for estimating α̂ and β̂...
1. Choose starting values for α and β
2. Calculate λ = eig(Φ>Φ)
3. Calculate SN = (βI + αΦ>Φ)−1

4. Calculate mN = αSNΦ
>y

5. Calculate γ =
∑

i
λi
λi+β

6. Update α = (N−γ)∑
n(yn−m>

N
φ(xn))2

7. Update β = γ

m>
N

mN

8. Repeat steps 3-7 until convergence

Linear Models Bayesian Linear Regression → 18 / 20



Bayesian Linear Regression
Our earlier example revisited...
• Bayesian linear regression automatically results in a regularised solution as a result of marginalising out the

uncertainty in w
• Hyper-parameters α and β are estimated from the training set - all available data used for training

Linear Models Bayesian Linear Regression → Our example revisited 19 / 20



What is γ?

• Noting that γ =
∑

i
λi
λi+β

it is equal to the sum of terms λi
λi+β

.

• As Φ>Φ is positive definite matrix we have λi > 0 and so 0 ≤ λi
λi+β

≤ M

• Two cases:

1. λi >> β: the estimate for wi will be close to its ML estimate and λi

λi+β ≈ 1
2. λi << β: The estimate for wi ≈ 0 (the prior value) and λi

λi+β ≈ 0
• The quantity γ has an intuitive interpretation as the effective number of parameters in the model.
• γ parameters are set by ML and M − γ are set from the prior.
• This can be seen in the estimate for the likelihood variance α−1 = 1

N−γ
∑

n(yn −m>n φ(xm))2
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