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Bayesian Inference
• Aim Estimate an unknown variable θ given known observations D

• θ is assumed random. It might correspond to the outcome of a repeatable (eg. a coin toss)
or non-repeatable event (eg. film preference)

• θ might be a single variable (eg. the probability of a coin toss) or a set of variables (eg. the
mean and variance of a Gaussian distribution)

• θ is normally discrete or continuous but can be something else
• D in general corresponds to the set of all observed data points (eg. D = {xn : xn ∈ RD}Nn=1)

• Approach
1. Assume a prior over the unknown quantity p(θ)
2. Choose a likelihood function p(D|θ)
3. Infer the posterior distribution

Posterior︷ ︸︸ ︷
p(θ|D) =

Likelihood︷ ︸︸ ︷
p(D|θ)

Prior︷︸︸︷
p(θ)

p(D)︸ ︷︷ ︸
Marginal Evidence

=
p(D|θ)p(θ)∫
p(D)p(D|θ)dθ

=
p(D, θ)∫
p(D, θ)︸ ︷︷ ︸

Joint

dθ
(1)
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Why Bother?
Using the posterior p(θ|D):
• Uncertainty Prediction "quantify the uncertainty in θ"

CCI
α (D) = (θl , θu) given P(θl ≤ θ ≤ θu|D) = 1− α

CHDI
α (D) = {θ : p(θ|D) ≥ p∗} given 1− α =

∫
θ:p(θ|D)>p∗

p(θ|D)dθ

• Predictive Posterior "predict a new data point"

p(D∗|D) =

∫
p(D∗|θ)p(θ|D)dθ

• Posterior Expectations "make optimal decisions under uncertainty"

a∗ = arg maxaEp(θ|D)[`(a; θ)]

Using the marginal likelihood p(D):
• Bayesian Model selection "choose the best model amongst possible candidates"

M∗ = arg maxM[p(D|M)] or φ∗ = arg maxφ[p(D|φ)]
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Bayesian vs a Frequentist Approach
1. Probability

• A Frequentist view
• "The probability of an event is equal to the frequency with which that event occurs"
• Most applicable when talking about repeatable experiments (eg. the probability of a coin toss)

• A Bayesian view
• "The probability of an event quantifies our belief that an event is likely to happen"
• It does not necessarily correspond to the frequency with which that event occurs (although it

can do)
• It can be used for non-repeatable experiments (eg. Netflix film matches)

2. Inference
• A Frequentist view

• Assume that θ is fixed but unknown and that the data is uncertain D ∼ p(D|θ)
• Maximum likelihood estimate: θMLE = maxθ[log p(D|θ)]
• Uncertainty in θMLE is generated by uncertainty in the observed data D (eg. using p-values)

• A Bayesian view
• Assume that θ is uncertain and unknown θ ∼ p(θ)
• Update our belief in light of observation D using bayes rule p(θ|D) = p(D|θ)p(θ)

p(D)

• Uncertainty in θ is quantified directly from p(θ|D) (eg. using credible intervals)
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Bayesian vs a Frequentist Approach
Pros

1. A consistent and logical framework for reasoning about both repeatable and non-repeatable random events

2. Allows us to assume that θ is inherently random (not possible in a frequentist approach)

3. Assuming that θ is unknown and that the data is fixed is often more natural (as the data is what we have
and θ is unknown).

4. Can lead to more intuitive characterisations of uncertainty (eg. p-values do not give you the probability
that θ lies in a particular interval).

5. When reasoning under uncertainty the sum rule and the product rule (and so Bayes rule) emerge as a
natural consequence of common sense assumptions. Bayesian inference can therefore be seen as a natural
extension of Boolean logic under uncertainty.

6. Bayesian inference naturally favours the simplest model - built in Occam’s razor

7. Models of different dimensionality can be easily compared using the marginal likelihood

Cons

1. In many cases calculating the posterior distribution is intractable

2. Sensitivity of results on the prior p(θ)
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Challenges

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D)p(D|θ)dθ

(2)

Intractable Inference
Calculating the posterior distribution p(θ|D) involves calculating the marginal evidence
p(D) =

∫
p(D|θ)p(θ)dθ which depending on our choice of model is often intractable.

In this case several options are available:
• Choose a model such that calculating p(θ|D) is tractable =⇒ Conjugate Priors
• Approximate the posterior distribution

• As a single point p(θ|D) ≈ δ(θ − θ̂) =⇒ MAP estimation
• As a Gaussian distribution p(θ|D) ≈ N (θ|µ,Σ) =⇒ Laplace Approximation
• As a General approximate distribution p(θ|D) ≈ q(θ) =⇒ Variational Inference
• As a set of samples p(θ|D) =

∑
i ωiδ(θ − θi ) =⇒ Monte Carlo, Histogram Approaches
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Challenges

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D)p(D|θ)dθ

(3)

Subjective Priors
The prior p(θ) encodes information about the likely value / properties of θ. But what do we do
if we know nothing about θ?

Several solutions have been developed to overcome this:
• Jeffreys Priors Assume that the prior is invariant under some transformation φ = h(θ)

• Reference Priors Assume a prior which is maximally far from all posteriors given the data
• Bayesian Model Selection Try different priors and choose the one that maximises the

marginal evidence p(D)
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The Model

The prior p(θ):
• Typically assumed to be some parametric distribution p(θ) = p(θ|φ) with

hyper-parameters φ
• Can be used to encode any prior information we might have about the likely value of θ

• Domain Knowledge - "we expect the person to be around 3± 0.5 metres away" or "a coin is
likely to be heads with a 50 % chance"

• Known Properties - "the probability of a person being a certain distance away from us should
be independent of whether we use inches or metres and / or our choice of origin" (Jeffrey
Priors / Reference Priors)

• Might be chosen to make the posterior easy to compute (Conjugate Priors)
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The Model

The Likelihood p(D|θ, φ)

• Describes how the data D is generated given θ
• Typically constructed assuming i.i.d observations p(D|θ) =

∏
i p(Di |θi )

• Might correspond to a model we already have available to us
• Typically will be a parametric model with hyper-parameters φ
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Choosing Hyper-parameters
How do we choose the hyper-parameters φ?
• Domain Specific Knowledge In some cases we have domain specific knowledge available or we might be

able to measure the hyper-parameters (eg. Kalman Filter)
• A fully Bayesian treatment When no domain knowledge is available, in a fully Bayesian treatment we

could add the hyper-parameters into θ, assuming a prior p(θ). Whilst, this may lead to better results this
comes at the expense of increased model complexity.

• Type II Maximum Likelihood / Empirical Bayes As a compromise we could think about setting the
hyper-parameters to point estimates estimated from the data (eg. MLE or MAP estimation). Over-fitting
becomes less of an issue the higher up the chain we go.

Method Definition
Maximum likelihood θ̂ = argmaxθ p(D | θ)

MAP estimation θ̂ = argmaxθ p(D | θ)p(θ | φ)

ML-II (Empirical Bayes) φ̂ = argmaxφ
∫
p(D | θ)p(θ | φ)dθ

MAP-II φ̂ = argmaxφ
∫
p(D | θ)p(θ | φ)p(φ)dθ

Full Bayes p(θ,φ | D) ∝ p(D | θ)p(θ | φ)p(φ)
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Examples

Example
Linear Regresssion For latents θ = {w}, observations D = {X ,Y }, and hyper-parameters φ = {τ, κ} we have

p(D|θ, φ) = Nor(Y |Xw , κ−1I ) and p(θ|φ) = Nor(w |0, τ−1) (4)

Example
PCA θ = {X}, D = {Y }, φ = {µ, σ2,W }

p(D|θ, φ) = Nor(Y |XW + µ, σ2I ) and p(θ|φ) = Nor(X |0, I ) (5)
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Examples

Example
Gaussian Mixture Model D = x1:N , θ = {z1:N ,Λ1:K ,µ1:K}, φ = {γ,Λ0, ν, β}

p (D|θ, φ) =

[
N∏

n=1

Nor (xn | µzn ,Λzn )

]
(6)

p (θ | φ) = Dir(π | γ)

[
N∏

n=1

Cat (zn | π)

][
K∏

k=1

Wis (Λk | Λ0, ν)Nor (µk | Λk , β)

]
(7)
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Examples

Example
Kalman Filter for observations D = x1:T , latents θ = z0:T , hyper-parameters φ = {A, a,Q,B, b, b0,R,R0} the
kalman filter assumes a model

p(D, θ|φ) =

p(D|θ,φ)︷ ︸︸ ︷[
T∏

t=1

Nor(xt |Azt + a,Q)

] p(θ|φ)︷ ︸︸ ︷[
T∏

t=1

Nor(zt |Bzt−1 + b,R)

]
N(z0|b0,R0)
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The Exponential Family

The exponential family includes a wide range of common likelihoods:
• Continuous Variables: Normal, Multivariate Normal, Uniform, Pareto, Log-Normal, Gamma, Inverse

Gamma, Weibull, Exponential, Beta, Chi-Squared, Wishart, Inverse Wishart, Normal-gamma
• Discrete Variables: Bernoulli, Binomial, Poisson, Categorical, Mutlinomial, Hypergeometric, Geometric,

Dirichilet

Theorem (The Exponential Family)
Every member of the exponential family has a likelihood p(x |η) of the form

p(x |η) = h(x)g(η)eη
>u(x) (8)

where η are the natural parameters, h(x) ∈ R is the base measure, g(η) ∈ R is referred to as the partition
function and u(x) are the sufficient statistics of the distribution and h(x), g(η) and u(x) are all known functions.
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Conjugate Priors

Theorem (Conjugate Priors)
Every member of the exponential family p(x |η) has a conjugate prior p(η) given as

p(η|χ, ν) = f (χ, ν)g(η)νeνη
>χ (9)

where f (χ, ν) is a partition function and g(η) is partition function of p(x |η). The hyper-parameter ν ∈ R can
be thought of as the effective number of psuedo-observations whilst χ their psuedo-average. The posterior
distribution in this case will take the same form as the prior:

p(η|X , χ, ν) ∝ g(η)ν+ηeη
>(

∑
n u(xn,+νX )) (10)
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Conjugate Priors

Observation
Inferring p(θ|D) will always be tractable for any likelihood p(D|θ) in the exponential family if we use the
conjugate prior p(θ). In this case p(θ|D) will take the same form as p(θ).

Examples
• Beta-Binomial
• Categorical-Dirichlet (latent dirichilet allocation)

• Gaussian-Gaussian

1. Unknown Mean (Bayesian linear regression, Kalman Filter)
2. Unknown Co-variance
3. Unknown Mean + Unknown Co-variance

Bayesian Statistics Priors → Conjugate Priors 17 / 42



The Beta-Bernoulli Model

Example
Beta-Bernoulli Model θ = {p}, D = {yn}Nn=1, φ = {a, b}
• Likelihood: p(D|θ, φ) =

∏N
n=1 Bern(yn|p) =

∏N
n=1 p

yn (1− p)1−yn = pN0(1− p)N1

• Prior: p(θ|φ) = Beta(θ|a, b) = 1
B(a,b)

pa−1(1− p)b−1

• Posterior: p(θ|D, φ) = Beta(p|a + N0, b + N1)

• Posterior-Predictive: p(y = 1|D, φ) = a+N0
(a+N0)(b+N1)

• Marginal Likelihood: p(D|φ) = B(a+N0,b+N1)
B(a,b)

where N0 and N1 are the number of observations belonging to class 0 and 1 respectively.
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The Dirichlet-Categorical Model

Example
Dirichlet-Categorical θ = {θ}, D = {yn}Nn=1, φ = {α}
• Likelihood: p(D|θ, φ) =

∏N
n=1 Cat(yn|θ) =

∏C
c=1 θ

Nk
k

• Prior: p(θ|φ) = Dirichlet(θ|α) = 1
B(α)

∏K
k=1 θ

αk−1
k

• Posterior: Dirichlet(θ|α1 + N1, ..., αK + Nk)

• Posterior-Predictive: p(y = 1|D, φ) = αk+Nk∑
j αj+Nj

• Marginal Likelihood: p(D|φ) = B(α+N)
B(α)

where Nk are the number of observations belonging to class k.
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Multi-Variate Normal with Unknown Mean and Co-variance
Example
Multi-Variate Normal θ = {µ,Σ}, D = {yn}Nn=1, φ = {m̆, κ̆, S̆ , ν̆}
• Likelihood: p(D|θ, φ) =

∏N
n=1 Norm(yn|µ,Σ)

• Prior: p(θ|φ) = Norm(µ|m̆, κ̆−1Σ)InvWas(Σ|S̆ , ν̆)

• Posterior: p(θ|D, φ) = Norm(µ| “m, “κ−1Σ)InvWas(Σ| “S , “ν)

• µ-posterior: p(µ|D|φ) = Student(µ|“µ, (“κ“ν)−1 “S , “ν)

• Σ-posterior: p(Σ|D, φ) = InvWas(Σ| “S , “ν)

• Posterior Predictive: p(y |D, φ) = Student(µ|“µ, (“κ+1) “S
“κ(“ν−D+1)

, “ν − D + 1)

Where...

1. Empirical Mean ȳ = 1
N

∑
n yn

2. Empirical Scatter Matrix Sȳ =
∑

n yny>n − 1
N

(
∑

n yn)(
∑

n yn)>

3. Posterior Mean “m = κ̆
κ̆+N

“m + N
κ̆+N

y

3.1 Convex combination of prior mean and empirical mean (MLE)

4. Posterior Confidences “κ = κ̆+ N and “ν = ν̆ + N

4.1 Confidence increased by the number of observations

5. Posterior Scatter Matrix = “S = S̆ + Sȳ + “κN
“κ+N

(ȳ − “m)(ȳ − “m)>

5.1 Prior scatter matrix + Empirical scatter matrix + Uncertainty from unknown mean
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(Less)Non-informative Priors
• In many situations we have domain specific knowledge that we can use to construct a prior =⇒ by introducing

biases we can reach the answer much more quickly (eg. we expect a coin flip to be heads 50% of the time)
• In situations where no-domain knowledge is available how do we choose a prior which encodes minimal

assumptions?

• Invariant Priors assume that the prior should preserve some symmetry (eg. invariant to
co-ordinate origin / choice of units).

• Jeffrey Priors choose a prior encoding minimal information such that scientists working with
different but valid parameterisations of θ are still guaranteed to reach the same conclusions.

• Reference Priors Assume a prior which is maximally far from all posteriors given the data
• But...

• can result in improper priors (priors that do not normalise to one) =⇒ Bad for Bayesian model
comparison

• inference many no longer be tractable

Non-Informative Priors
Non-Informative priors are still informative - every prior encodes some prior assumption
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Invariant Priors - A Motivating Example

Example
Permutation Invariance You arrive into a room to find three cups turned upside down on the table. You are
told, by your closest friend (who never lies) that under one of the cups is a ball. You will most likely assume a
uniform prior over each cup (eg. p = 1/3) but why? To see why we reached this conclusion, note that our
choice of label is arbitrary; we could label the cups A, B, C or B, C , A or C , A, B. Each is valid. The
conclusion of the experiment should therefore be the same independent of our choice of label. A uniform prior is
the only prior which respects this (permutation) invariance.
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Translation Invariant Priors

Example
You need to measure how far away you are from a laser. You know the laser has an accuracy of ±σm standard
deviations but no nothing about your current location. What is a sensible choice of prior in this case?

The likelihood of the laser measurement is given as p(x |µ) = Norm(x |µ, σ2) where µ is your true position.
Whilst you have no knowledge about your current position you expect the accuracy of the laser will be the same
no matter how far you are from it; if you move to a new location µ̂ = µ+ c the likelihood of the new laser
observation will be given as p(x̂ |µ̂) = Norm(x̂ |µ̂, σ2). A sensible choice of prior will therefore satisfy this
symmetry...
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Translation Invariant Priors

Theorem
Translational Invariant Priors A likelihood of the form p(x |µ) = f (x − µ) respects translational invariance if
p(x̂ |µ̂) = f (x̂ − µ̂) where x̂ = x + c and µ̂ = µ+ c. To choose a prior that respects this invariance, we need a
prior that gives equal probability mass to every possible µ in the domain such that p(µ) = constant.

Proof The integral of the probability mass over an interval A ≤ µ ≤ B and the shifted interval
A− c ≤ µ ≤ B − c should be the same. This implies∫ B

A

p(µ)dµ =

∫ B−c

A−c

p(µ)dµ =

∫ B

A

p(µ− c)dµ =⇒ p(µ− c) = p(µ) =⇒ p(µ) = constant
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Scale Invariant Priors

Example
You need to measure your location relative to a laser. You know you are most likely at a distance µ from the
laser but know nothing about the its accuracy. What is a sensible choice of prior in this case?

The likelihood of the laser measurement is given as p(x |σ) = Norm(x |µ, σ2) where µ is your expected position.
Whilst you have no knowledge about the accuracy of the laser, you would not expect your choice of scale to
effect the outcome of the experiment; if you choose a new unit such that σ̂ = cσ the likelihood of the laser
observation in the new units will be given as p(x̂ |σ̂) = Norm(x̂ |σ̂2). A sensible choice of prior will therefore
satisfy this symmetry...
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Scale Invariant Priors

Theorem
Scale Invariant Priors A likelihood of the form p(x |µ) = 1

σ
f ( x
σ

) respects scale invariance if p(x̂ |µ̂) = 1
σ̂
f ( x
σ̂

)
where x̂ = cx and µ̂ = cµ. A prior that respects this symmetry will be given as p(σ) ∝ 1

σ

Proof The integral of the probability mass over an interval A ≤ σ ≤ B and the shifted interval A/c ≤ σ ≤ B/c
should be the same. This implies∫ B

A

p(σ)dσ =

∫ B/c

A/c

p(σ)dσ =

∫ B

A

1
c
p(
σ

c
)dσ =⇒ p(σ) =

1
c
p(
σ

c
) =⇒ p(σ) ∝ 1

σ
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Jefferey Priors

• In the case where we know nothing about θ we might assume that all possible θ are equally likely (eg.
uniform distribution)

• For example a scientist trying to infer the probability that a coin comes up heads θ might assume that θ is
uniformly distributed over the interval [0, 1].

• In this case the odds of success τ = θ
1−θ = f (θ) is distributed as

p(τ) =

∣∣∣∣df −1

dθ

∣∣∣∣Uniform(f −1(τ)) =
1

(1 + τ2)

• Another scientist assuming that τ is uniformally distributed will therefore reach a completely different
conclusion! And yet there is no reason to believe that the first scientist is any more right than the second.

• Jeffreys priors ensure that two statisticians will reach the same conclusion independent of whether they use
τ or θ.
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Jefferey Priors

Theorem
For any likelihood p(D|θ), Jeffreys prior is given as pJ(θ) ∝

√
F (θ) where F (θ) is the Fischer information

F (θ) = Ep(D|θ)

[
∂
∂θ

log p(D|θ)
]
. In this case the prior will be invariant to all parameterisations τ = f (θ) such

that PJ(θ) = PJ(τ)
∣∣ dτ
dθ

∣∣

Example Using Jeffreys prior for the example above we find that
p(θ) = Beta(θ| 12 ,

1
2 ) which is a horse shoe shape with most of the mass

concentrated on θ = 0 and θ = 1.
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Jeffrey Priors

• Examples

• Bernoulli Distribution: p(θ) = Beta(θ| 12 ,
1
2 )

• Categorical Distribution: p(θ) = Dir(θ| 12 , ...,
1
2 )

• Mean of a Gaussian: p(θ) ∝ 1 or p(θ) = Norm(0,∞)
• Standard Deviation of a Gaussian: p(θ) ∝ 1/σ or p(θ) = InvGamma(σ|0, 0)

• Improper Priors in many instances jeffrey priors are improper (i.e do not integrate to 1). This is not
generally a problem if they lead to a proper posterior (i.e that does integrate to 1). Improper priors can
lead to difficulties with Model Selection

• Relation to Invariant Priors the jeffrey prior for the mean and the variance of a Gaussian distribution are
the same as the invariant shift and scale priors derived earlier
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Reference Priors

• Jeffreys priors are also applicable to higher dimensions: pJ(θ) ∝
√

det(F (θ)) where F (θ) is the fisher
information matrix. However, this can be problematic...

• Reference priors are a superior alternative: "choose a prior that is maximally far from all posterior
distributions when averaged across the data":

p∗(θ) = arg maxp(θ)

(
Ep(D)[KL(p(θ|D)‖p(θ))]

)
(11)

= arg maxp(θ)

(
Ep(θ)[KL(p(D|θ)||p(D))]

)
(12)

• In 1d reference priors are equivalent to Jeffrey priors
• In higher dimensions reference priors can be computed for one parameter at a time using the chain rule.

Can become computationally intractable. In this case variational approximations may be used instead.
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Approximate Inference

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D)p(D|θ)dθ

(13)

Intractable Inference
Calculating the posterior distribution p(θ|D) involves calculating the marginal evidence p(D) =

∫
p(D|θ)p(θ)dθ

which depending on our choice of model is often intractable.

In this case several options are available:
• Choose a model such that calculating p(θ|D) is tractable =⇒ Conjugate Priors

• Approximate the posterior distribution

• As a single point p(θ|D) ≈ δ(θ − θ̂) =⇒ MAP estimation
• As a Gaussian distribution p(θ|D) ≈ N (θ|µ,Σ) =⇒ Laplace Approximation
• As a General approximate distribution p(θ|D) ≈ q(θ) =⇒ Variational Inference
• As a set of samples p(θ|D) =

∑
i ωiδ(θ − θi ) =⇒ Histogram Filter, MCMC
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Collapsing the posterior to a point

• Perhaps the simplest option is to collapse the posterior to a point p(θ) = δ(θ − θ̂)

• The optimal point estimation is dependent on our choice of regret θ̂ = argmin
θ

∫
p(θ|D)`(θ, θ̂)dθ

• `(θ, θ̂) = ‖θ − θ̂‖22 =⇒ θ̂ = θ = E[θ | D]
• `(θ, θ̂) = |θ − θ̂|1 =⇒ θ̂ = median(p(θ|D))
• `(θ, θ̂) = I(θ = θ̂) =⇒ θ̂MAP = argmaxθ p(θ | D) = argmaxθ p(θ,D)

• In practice the easiest point estimate to compute is θ̂MAP at it only involves optimisation and not
integration.

• Both θ̂ = θ and θ̂ = median(p(θ|D)) can be estimated using Monte Carlo integration
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The Laplace Approximation

Theorem (The Laplace Approximation)
Any distribution p(z) = 1

Z
f (z) can be approximated as a Gaussian distribution p(z) ≈ Norm(z |ẑ ,A−1) where ẑ

is the mode of p(z) and A = −∇∇ log f (z)|z=ẑ is the negative log hessian evaluated at ẑ .

Proof Considering p(z) = 1
Z
f (z) and performing a taylor expansion of log f (z) around the mode θ̂ of p(z) gives,

log f (z) ≈ log f (ẑ)− 1
2

(z − ẑ)>A(z − ẑ) =⇒ p(z) ∝ e−
1
2 (z−ẑ)>A(z−ẑ) (14)

=⇒ p(z) = Norm(z |ẑ ,A−1) (15)

where we have used the fact that ∇ log p(z) = 0 when z is equal to the mode ẑ .
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The Laplace Approximation

Observation use the Laplace approximation to approximate p(θ|D) ≈ Norm(θ|θMAP ,A−1)...

Laplace Approximation to the Posterior Distribution
The posterior p(θ|D) can be approximated as p(θ|D) ≈ Norm(θ|θMAP ,A−1) where θMAP is the MAP estimate
for θ and A = −∇∇ log p(θ,D)|θ=θMAP .

Proof Follows almost immediately from the previous definition of the laplace approximation setting z = θ,
p(z) = p(θ|D) and f (z) = p(D|θ)p(θ) = p(θ,D) whilst noting that the mode of p(θ|D) is given by θ̂MAP .
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Variational Inference

• Laplace Approximation = Approximate p(θ|D) with a normal distribution
• Variational Inference = Approximate p(θ|D) with a general distribution q(θ) ∈ Q where

q = argmaxq∈Qd [q(θ), p(θ|D)]

• Any divergence between q(θ), p(θ|D) can be used - in practice KL divergence is a good choice (arises
naturally from information considerations)

q = arg minq∈QKL[q(θ)‖p(θ|D)] (16)

= arg minq∈QEq(θ)[log q(θ)− log(p(θ|D)] (17)

= arg minq∈QELBO[q|D] + log p(D) (18)

= arg minq∈QELBO[q|D] (19)

where ELBO[q|D] = Eq(θ)[log p(D|θ)p(θ)− log q(θ)].
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Sampling Approaches

Variational Inference
Variational approaches are fast but will only be accurate if the true posterior p(θ|D) belongs to Q. In all other
cases q(θ) will be sub-optimal.

• Sampling approaches approximate q(θ) =
∑

s ωsδ(θ − θs) where
∑

s ωs = 1 and guarantee in the limit as
N →∞ that q(θ)→ p(θ|D)

• The histogram filter

• Convert continuous probability space θ ∈ RN to a finite set of possibilities Θ = {θ1, ..., θK}
• Approximate p(θ|D) =

∑
s ωsδ(θ − θs) with ωs = p(D|θ)p(θ)∑

k p(D|θk )p(θk )

• Other normalisation schemes are possible (eg. using the trapezoid rule)
• Curse of Dimensionality: The number of samples needed to evenly cover a space θ ∈ RN is exponential in

N.
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Markov Chain Monte Carlo

• Solution: Using samples where p(θ|D) ≈ 0 is inefficient =⇒ use p(θ|D) to guide the sampling procedure
• But evaluating p(θ|D) = p(θ,D)p(D) exactly is infeasible as p(D) =

∫
p(θ|D)p(D)dθ (the problem we

are trying to solve). How do we achieve a more efficient sampling approach without evaluating p(D)?
• Metropolis Hasting (MH) Algorithm: start at a random point in parameter space and perform a random

walk sampling new θk from a proposal distribution q(θ′|θ) which is chosen such that (eventually) the
fraction of time we spend visiting each θ is proportional to the posterior distribution. To decide whether to
stay at the current state or to move to a new θ′ all we need to do is evaluate the unormalised density ratio
p(θ|D)
p(θ′|D)

= p(D,θ)
p(D′,θ)

• Proposal distribution q(θ′|θ) in MH is typically chosen to be a Gaussian distribution → Inefficient due to
blind random walk behaviour

• Gibbs Sampling: improve efficiency of sampling approach using conditional relations between latents in θ
• Hamiltonian Monte Carlo: guide the walk using gradient information when θ ∈ RD
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Bayesian Model Comparison
The marginal evidence p(D|m) =

∫
p(D|θ,m)p(θ|m)dθ can be used to compare different models m ∈M

• Bayesian Model Selection:

m̂ = arg maxmp(m|D) where
p(D|m)p(m))∑

m∈M p(D|m)p(m))
(20)

= arg maxm∈Mp(D|m) if p(m) = Uniform(|M|−1) (21)

• Bayesian Model Averaging:

p(y |x ,D) =
∑
m

p(y |x ,m)p(m|D) (22)

∝
∑
m

p(y |x ,m)p(D|m) if p(m) = Uniform(|M|−1) (23)

Improper Priors
Improper priors should be avoided with model selection.
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Bayesian Model Comparison

• Bayesian Hypothesis Testing:

BF =
p(D|m1)

p(D|m0)
=

p(m1|D)

p(m0|D)

p(m0)

p(m1)
(24)

Bayes factor BF (1, 0) Interpretation
BF < 1

100 Decisive evidence for M0

BF < 1
10 Strong evidence for M0

1
10 < BF < 1

3 Moderate evidence for M0
1
3 < BF < 1 Weak evidence for M0

1 < BF < 3 Weak evidence for M1

3 < BF < 10 Moderate evidence for M1

BF > 10 Strong evidence for M1

BF > 100 Decisive evidence for M1
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Occams Razor

Occams Razor
For two models with the same performance prefer the simpler model.

Bayesian Occams Razor
The marginal likelihood p(D|m) naturally favours the simplest model. A more complex model...
• =⇒ has larger parameter space
• =⇒ has less mass p(θ|m) per each parameter (must normalise to 1)
• =⇒ has smaller average p(D|m) =

∫
p(D|θ,m)p(θ|m)dθ
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Approximating the Marginal Likelihood

• The marginal likelihood can be difficult to compute → requires marginalising over the entire parameter
space.

• Bayesian Information Criteria

• Approximating p(θ|D) ≈ N (θ|θMAP ,A) using the laplace approximation we can estimate
p(D) = p(D|θ)p(θ)/p(θ|D) and so

log p(D) ≈ log p(D|θMAP) + log p(θMAP) +
M

2
log(2π)− 1

2
log |A|

• If we assume the prior distribution is broad then θMAP → θMLE and the hessain matrix has
full rank then

logp(D) ≈ log p(D|θMLE )− 1
2
D logN = BIC [m]

where θMLE ∈ RD and N is the number of data points.
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Alternatives to the Marginal Likelihood

• Akaike Information Criteria: Frequentist equivalent replacing 1
2D logN with a complexity factor of

C [m] = dof (m). Penalises complex models more heavily then BIC.
• Widely Applicable Information Criteria:

WAIC [m] = −LLPD[m] + C [m]

where LLPD[m] =
∑

n logE[p(yn|D,m)] and c[m] =
∑

n logV[p(yn|D,m)]

• Minimum description Length:

• Model complexity is equal to the number of bits needed to communicate the data to the
reciever

• The sender specifies the model taking C [m] = − log p(m) bits.
• The receiver fits the model by computing θ̂m approximately reconstructing the data.
• The sender then sends the residual errors that cannot be explained by the model taking
−L(m) = −

∑
n logp(yn|θm,m)

• The minimum description length J[m] = −L[m] + C [m]
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